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THE HOMOLOGY OF
THE MAPPING CLASS GROUP

EDWARD Y. MILLER

1. Introduction
The mapping class group I, is the group of components of the groups
Diff*(S,) or orientation preserving diffeomorphisms of a Riemann surface S,
of genus g. Since each component is contractible, there are natural isomor-
phisms of integral cohomology groups:

(1.1) H*(BDiff*(S,); Z) = H*(BT,; Z).

In the context of complex analysis, I, is called the Teichmuller group. It
acts properly and discontinuously on the Teichmuller space T3¢~? with finite
isotropy groups. The quotient of this action is the module space M, of smooth
algebraic curves of genus g. Consequently, there is an isomorphism of rational
cohomology:

(1.2) H*(BT,: 4) = H*(M,: Q).

In this paper we will show that M o BT,, and BDiff*(Sg) get more and
more complicated as the genus g tends to infinity. More precisely, we will

prove:
Theorem L.1. Let Q[z,, z,, z4, - - - | denote the polynomial algebra of genera-
tors z,, in dimension 2n, n = 1,2,3, - - - . There are classes y5, Y4,"**, Yo " "

with y,, in the 2nth cohomology group H*"(B Diff™*( S,); Z) such that the
homomorphism of algebras sending z,, to y,,,

Qlz,,24, -+ 1> H*(M,; Q) = H*(BDiff*(S,); Q)
is an injection in dimensions less than (g/3).
These classes y,, were first introduced by D. Mumford [7]. In the topologi-
cal context, they are defined as follows:

Let p: E — BDiff*(S,) be the universal S, bundle with fiber S,. Let d
be the first Chern class of T7,, the tangent bundle along the fibers of the
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2 EDWARD Y. MILLER

fibration p, and p, denote the “integration along the fibers” homomorphism
in integral cohomology. The homomorphism p, maps H2?"*%(E;Z) to
H*"( B Diff *(8,); Z) (since the fibers are dimension 2). Define y,, by

(13) y2n=p*(dn+1)7

where d"*! is the (n + 1)-fold cup product of d. (Note: D. Mumford in [7]
defines analogous classes in H*(M o Z) by a strictly algebraic process. His
classes extend to the closure of the moduli space M ,.)

It is useful to utilize Diff(S,, D?), the group of orientation preserving
diffeomorphism of S, fixing a chosen disk D?in S,- By taking connected sums
of the surfaces S, and S, (of genera g and k) along their fixed disks we obtain
natural homomorphisms

(1.4) Diff (S,, D2) X Diff(S,, D?) - Diff (S,. ,, D),
(1.5) Diff ( S,, D?) x (identity) — Diff (S, ,).

In these terms one of the basic results concerning the homology of the
mapping class group is the following remarkable theorem of J. Harer [3].
Theorem 1.2 (J. Harer). The induced maps of classifying spaces

(1.6) BDiif*(s,, D?) > BDiff*(s,,,), BDift*(s,, D?) > BDiff*(S,)

give rise to isomorphisms on integral homology in dimensions less than (g/3).

Note. Since Theorem 1.2 does not appear in Harer’s work in the form
stated here we will show in §4 how it follows from his much stronger results
131

Harer’s theorem implies that the rational cohomology of the moduli space
M, stabilizes. Indeed this is true integrally since M, is a V-manifold whose
singularities have codimension that increases with g (see [7]). The algebraic
analog of BDiff*(S,) is the moduli space of triples (C,, p,v) where C, is a
smooth curve of genus g, p is a point on C,, and v is a nonzero cotangent
vector based at p.

By Theorem 1.2 the limit of homology groups

A = Lim H,(BDiff*(S,, D?); Q)
is of finite type. The homomorphisms (1.4) induce maps of classifying spaces

(1.7) F: BDiff*(S,, D?) x BDiff*(S,, D?) > BDiff*(S,,,, D?).

These induce a product F, on the limit and so a Hopf algebra structure on the
limit A.
Theorem 1.3. (a) A = Lim Hy(B Diff*(S,, D?); Q) under the Fy-product is

a commutative, cocommutative Hopf algebra of finite type.
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(b) A is the tensor product of a polynomial algebra on even dimensional
generators and an exterior algebra on odd dimensional generators.

(c) A contains at least one generator x,, in each even dimension 2n, n =
1,2,3,---.

As explained in §2, Theorem 1.3 part (a) is implied by general considera-
tions. Part (b) then follows from the general structure theory of Hopf algebras
over Q of Milnor and Moore (see [6]). Part (c) is proved by explicitly
constructing the desired classes x,, and detecting them by means of the
universal cohomology classes y,, of Mumford.

It is presently an open question whether or not there are nontorsion classes
in the odd dimensional homology of the mapping class groups T, in dimen-
sions less than (g/3). Mumford has conjectured that A is the polynomial
algebra on precisely the classes x,,, n = 1,2,3,--- [7] (i.e., one generator in
_each even-dimension). Quite possibly the number of even dimensional genera-
tors might increase exponentially with dimension.

From the definition (1.3) the universal classes y,, restricted to
H?"( B Diff (S, D?); Z) are compatible under the inclusions (1.6). Conse-
quently, they define universal cohomology classes in the inverse limit
L(i_m H?*"(BDiff*(S,, D?); Z).

The main properties of these universal classes y,, are:

Lemma 1.4. The classes y,, vanish on the F,-decomposibles of the Hopf
algebra A above.

By Lemma 1.4 the classes y,, may be used to detect polynomial generators
of A. That is, if we construct classes x,, in A with nonzero evaluation by y,,
(i-e., [ ¥y, X5,] # 0), then the x,,’s are the desired polynomial generators
sought in Theorem 1.3, part (c). Dually (again using Harer’s Theorem 1.2)
Theorem 1.1 is proved. '

In view of Harer’s Theorem 1.2, H,,(B Diff"(S,, D?); Z) is isomorphic to
H,,(BDiff*(S,); Z) for g.large. Hence to prove Theorem 1.3, part (¢) it
suffices to construct explicit classes u,,, in H,,(BDiff*(S,); Z) with [y3,,, 45,]
# 0 for g large.

The desired examples are provided by Theorem 1.5 below.

Theorem 1.5. For each n there is a fibration of smooth projective algebraic
varieties p,: Z"*! — X" with fiber a smooth connected curve, dim¢c X" = n,
[d"+Y, Z"*tY + 0. Here d equals the first Chern class of the tangent bundle along
the fibers T, to p,. The genus of fiber Y" of p, may be made as large as desired.

The equality [d"", Z"*1] = [( p,)+(d"" 1), X"] = [ ¥,,, X"] follows from the
definition of the “integration over the fibers” map ( p, )«. Hence, once Theo-
rem 1.5 is proved, Theorem 1.3, part (c) and Theorem 1.1 are proved as
explained above.
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The construction of p,: Z"*! - X" of Theorem 1.5 is modeled on the
methods of Atiyah {1]. In that paper a more standard detection procedure is
suggested. It may be described as follows.

The local coefficient system [ H!(Fiber; Z)] with its symplectic form via cup
product defines a classifying map

L: BDift*(s,, D?) > BSp(2g, Z).

Equivalently, L is the classifying map of the homomorphism Diff *(S,, D?*) >
Sp(2g, Z) which records the symplectic homomorphism induced by a diffeo-
morphism of the Riemann surface S,. It is natural to attempt to detect nonzero
classes in B Diff"(S,, D?) by pulling back classes from BSp(2g, Z). This is
Atiyah’s approach in studying two dimensional classes.

The real symplectic group Sp(2g, R) has maximal compact subgroup U(g),
the unitary group. Thus, the inclusion U(g) — Sp(2g, R) induces a homotopy
equivalence J: BU(g) — BSp(2g, R) with inverse J~!. Consequently, the
inclusions and homomorphisms of groups Diff*(S,, D?) - Sp(2g, Z) —
Sp(2g, R) « U(g) induce a map of classifying spaces

(1.8) G: BDiff*(S,, D?) - BU(g).
Recall that the homology of BU = Lir)n BU(g) is a polynomial algebra

under the Whitney sum on generators z, in dimension 2#; and that the
primative characteristic class s,,(¢) = nlch,(¢) in H in(BU; Z) vanishes on
decomposibles with [ch,(¢), z,] # 0. Here ¢ is the universal bundle over BU.
See [1].

Note that the map G sends the F-product in LiI)nBDifF(Sg, D?) to the
Whitney sum product of bundles in BU = L_ir)n BU(g). Consequently,

G*(ch,(t)) vanishes on the Fy-decomposibles of A and so may be used to
detect possible polynomial generators.

The relationship between this detection procedure and the nonmultiplica-
tivity of the signature has been elucidated by Atiyah [1]. He shows that the
signature of the total space of a (4k — 2) dimensional family X2*~! of
Riemann surfaces can be expressed in terms of the classes G*(ch,)(?))
evaluated against the characteristic classes of X2%~1,

The relationship between these detection procedures was independently
discovered by D. Mumford. It is:

Theorem 1.6. There exist as classes in H*(B Diff*(S,, D*): Q):

(1.9) G*(ch(ny()) = N,(32,) + (decomposible)

with N,, =0 and N,, _, = (-1)*"'B,/(2k)!, where B, is the kth Bernoulli
number.
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Combining the above Theorem 1.1 and 1.4 we have proved the result.
Theorem 1.7. The map G*
(1.10)

H*(BU; Q) » H*(BSp(2¢,2); Z) — Lim H*(BDiff*(S,, D?); 0

is an injection of the polynomial algebra Q{c,(t)/n odd].

Recall that Borel [2] has proved that the cohomology of BSp(2g,Z)
stabilizes and the limit is a polynomial algebra on generators in dimensions 2,
6, 10, 14, - - - . Thus we have proved:

Theorem 1.8. The map H*(BSp(Z); Q) — L(i_m H*(B Diff+(Sg, D?); Q) is
an injection.

Results similar to those described here have been independently obtained by
Morita.

It is a pleasure to acknowledge the help and encouragement which I received
from John Harer in doing this work.

2. Proofs of the above results assuming Theorems 1.2 and 1.5

Proposition 2.1. (a) There is an action of the little square operad of disjoint
squares in D?* on the disjoint union of the B Diff (S, D?ys extending the
F-product.

(b) The group completion of the disjoint union of the B Diff +(Sg, D?Ys under
F is a double loop space.

(c) F induces a commutative, cocommutative, associative, coassociative Hopf
algebra structure on the limit A = Lir)n H,(BDiff*(S,, D?); Q).

(d) A is of finite type and is a tensor product of a polynomial algebra on even
dimensional generators and an exterior algebra on odd dimensional generators.

This proposition is easily proved. Part (a) is obtained by taking connected
sums of the chosen fixed disks with the disjoint squares in the disk D? to get
maps

(2.1) Config;(D?) x [Ditt* (s,, D?)]” - Ditt* (s,, D?)

which when classified give the desired structural maps of part (a). Here
Config j(Dz) is the space of configurations of ; disjoint squares in the disk
(sides parallel to the x, y axes). General loop space theory (see May [5]) shows
that part (a) implies (b). Harer’s Theorem 1.2 above implies that A is of finite
type. This combined with the structure theory of Hopf algebras over Q of
Milnor and Moore [6] implies part (c). Note Proposition 2.1 subsumes Theo-
rem 1.3, parts (a) and (b).
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Proof of Lemma 1.4. The universal bundle E over BDiff*(S,, D?) X
B Diff*(S,, D?) is a union of bundles E = E, U E,, where E,, E, are smooth
surface bundles with fibers (ﬁg — (interior of D?)), respectively (S, — (interior
of D?)). The intersection E; N E, is equal to the common boundaries 0E, =
9E, which is a trivial circle S* = 3D? bundle.

Form the bundles E,. (j = 1,2) by identifying two points x, y of E, if they
are in the same fiber and lie in the boundary circle. Equivalently, E,., E,.,
may be obtained from E by identifying two points x, y of E if they both lie in
the same fiber and both lie in E,, respectively E,. These identifications define
continuous maps

(2.2) fi: E> En,  fy E—> E,.

Let p denote the bundle map for £ and p;: C; — BDiff(Sg,Dz), pZ
C, — BDiff*(S,, D?) denote the universal (S,, D?), respectively (S, D?),
bundles. Thus the pullback bundles (pr;)*(C;), (pr,)*(C,) of C,, respectively
C,, to the product BDiff*(S,, D?) x BDiff*(S,, D?) are precisely Ei», E
respectively. Let d, d;, d,, denote the first Chern class of the tangent bundle
along the fibers of the universal bundles p: E — BDiff"(S,, D?) x
BDiff*(S,, D*), p;: C; — BDiff*(S,, D*), p,: C, - BDiff*(S,, D?) re-
spectively.

By construction the equality of d = ( f;)*(pr;)*(d,) + (f,)*(pr,)*(d,). Also
the two terms in this sum have disjoint supports. Thus, c¢"*! =
(FOXEr)* ()™ + (LY Pr)*(dy)™! and so F*(p,) = (7 X 1) +
(»,, X 1) as claimed in Lemma 1.4.

As explained by Atiyah [1], Theorem 1.6 follows from the Grothendieck
Riemann Roch theorem. Theorems 1.7 and 1.8 follow from this by combining
Theorems 1.1, 1.2, 1.6 and the fact that G sends the F-product to the Whitney
sum on BU.

As in §1, Theorem 1.1 follows from Theorems 1.2 and 1.5 and the above.
The whole crux of this paper therefore rests on the construction of the
examples of Theorem 1.5.

3. Constructionof p,: Z"*! — X"

Qur construction is modeled on that in Atiyah’s paper [1]. There he produces
a curve bundle over a curve with nonzero signature. Hence we review his
methods.
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Let C be a connected curve with free involution 4 and genus g. In other
words, C is the double cover of a curve C’ = (C/A4) of genus g’. These exist as
soon as g’ is at least 1 and we take g’ at least 2. Note that g = 2g’ — 1 and so
is at ieast 3 and is odd.

Let X be the covering of C given by the homomorphism

(3.1) m(C) - H(C; Z) > H\(C;2/2Z) = (2/2Z)*.

It has the property that if f: X — C is the associated covering map, the
induced homomorphism

(3.2) f's HN(C; Z2/22Z) » HY(X;, Z/22Z)

is zero.

Now consider in X X C the graphs G, and G, of f and Af. Atiyah’s choice
of f was to ensure the following property of these graphs.

Lemma 3.1 [1,p. 75]. The homology class of the sum (G;+ G,;) in
H,(X X C; Z) is even (i.e., divisible by 2).

By lemma 3.1 we may form the ramified double covering Z% of X X C

along the divisor (G, + G,). This gives Atiyah’s example p;: Z? > X X
(pn)
X = X' 7% is a 4-manifold with nonzero signature which fibers over a

Riemann surface. The fiber of the map p, in this example is Y, the ramified
double covering of the curve C branched at two points. For his example
Atiyah proves

(3.3)  [»,, X'] = [d2, Z2] = 3(signature of Z?) = 3(g — 1)287L.

d is the first Chern class of the tangent bundle along the fibers of the map p,.

To generalize the above construction it is convenient to form certain finite
covers of C. For this purpose choose an epimorphism H,(C; Z) - (Z + Z).
Let G, be the subgroup of 7;(C) which is the kernel of the epimorphism

(34) m(C) - H(C;2)~ (2 + 2)~ ((2/2°n2) +(2/2"2)),

and let C, = C be the associated 4"-fold covering of C with its free (Z/2"Z)
+ (Z/2"Z) action.

The subgroups G, of m(C) fit into a descending sequence
(3.5) Wl(c)=G()DGIDG23"'DGn_le"D"'
with (G,/G,_) = (Z/2Z) + (Z/2Z). Equivalently, the finite covers C, fit
into a tower of coverings

(3.6) C=CeCeCe o «CeC -l
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where C, —» C,_, is a 4-fold covering. Indeed; C,_, is the quotient of C, by a
free (Z/2Z) + (Z/2Z) group action. Note by construction C, is a connected
curve of genus g(n) =4"(g— 1)+ 1.

Starting from Atiyah’s example p;: Z2 - X! we will inductively define
smooth algebraic fibrations of smooth projective algebraic varieties p,: Z"*!
— X" with fiber Y, such that:

A(n): p, has fiber Y, a connected curve.
B(n): There are maps Z"*! — Z" such that the composite map

ZM S Zn szl o 5 Z2 5 XX Co C
sends both 7,(Y,) and =,(Y,,) onto the subgroup G,_; of
(37) I\ 4R I\ %n n—1

7 (C).
C(n): [(d,,)"“, Z"”] # 0, where d,, is the first Chern class of
the tangent bundle along the fibers of p,.

Atiyah’s construction is the n = 1 case, p;: Z? —» X', Such a construction
will then provide the desired examples of Theorem 1.5.

Let us assume inductively that p,: Z‘*! —» X' has been constructed satisfy-
ing properties A(i), B(i), C(i)fori < n[n > 1].

In view of B(n) we may lift the map (3.7) Z**! - C to the covering C,_;
thereby obtaining a map Z"*! - C,_;. By B(n) we conclude that this map
sends both 7;(Y,) and #;(ZD"*!) onto m(C,_;) = G,_;.

Let Z’' be the 4-fold covering ¢: Z'’ — Z"*! induced from the 4-fold
covering C, = C,_; by the map constructed above. By definition, Z’ comes
equipped with two commuting free involutions [say A4,, B,] giving a free
(Z/2Z)+ (Z/2Z) action on Z’ and a map Z’' — C, which is (Z/2Z) +
(Z/2Z) equivariant. Also ¢: Z’ - Z"*! is the quotient map of the free
action. Let Y’ denote the fiber of Z’ — Z"*! — X" The fiber ¥, of p, is then
the quotient of Y’ by the free action. Since both =;(¥,) and II;(Z"*!) map
onto G,_; and thence onto (G,_,/G,) =(Z/2Z)+(Z/2Z), Y’ is a con-
nected curve. Moreover we have the property:

(38) m(Z) > m(Z"') > = (C) and (V) » m(Z"*1) —» m(C)
both have image G,,.

Now consider the fiber product of Z’ with Z’ over X" defined by the

pullback diagram

pr2

(Z' X 4 Z') z’
(3.9) o | |
z -

X’l
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with r the composite of ¢: Z' - Z"*! with p,: Z"*' > X". The common
fiber is Y’, the fiber of .

Note. The fiber product of two smooth algebraic fibrations of smooth
projective algebraic varieties (say f: V —» W, g: V' > W) is a smooth projec-
tive algebraic variety. this is proved by showing that the fiber product is a
Hodge manifold and appealing to the intrinsic characterization of smooth
projective algebraic varieties of Kodiera [4].

Let A, B be the fiber preserving commuting free involutions on the fiber
product of (3.9) defined by A(x, y) = (x, 4,y), B(x, y) = (x, B,(»)). These
give a free (Z/2Z) + (Z/2Z) action on the fiber product (3.9) which is fiber
preserving for the projection pr; (projection on the first factor). Let S:
Z' = (Z' X y» Z') be the section S(z) = (z,z) and consider the smooth di-
visor
(3.10) D =S8(Z)+ AS(Z").

This smooth divisor intersects each fiber Y” of pr; in precisely two points.

Corresponding to Lemma 3.1 we will later prove:

Lemma 3.2. Let R: m(Z") > Awt{H Y"; Z/2Z)] be the representation of
m,(Z") on the cohomology of the fiber of pr, above which records the monodromy
of the fibration. Then the kernel K, = (kernel of R) has finite index and so
defines a finite covering T"** — Z'. Let X"*! = T"*! be the finite covering
associated to the epimorphism = (T"*') > H(T"*'; Z/2Z). Then in the pull-
back diagram which defines W"*2,

h
Wn+2 (Z/ XX" Z/)
1
(3.11) \ |om)
Xn+1 N Tn+1 i

the divisor h™1(D) regarded as an element of H*(W"*%, Z) is even (i.e.,
divisible by 2).

Given Lemma 3.2, we may form the ramified double covering Z"*?2 of
W"*? along the divisor A~'(D). The composite p,.,: Z"*> b onr L xnen
projective algebraic varieties. (See pp. 76~77 of [1].)

By construction Y, _;, the fiber of p, ., is the ramified double covering of
Y’ (ramified at two points). Also Y’ is a nontrivial 4-fold covering of Y,, the
fiber of p,. Since Y, is a connected curve, Y, ., is a connected curve. This
proves property A(n + 1) of (3.7).

The map Z"+2 —» Z"*! needed for property B(n + 1) of (3.7) is provided
by the composite

(3.12) ZM o W2 X 4 Z0) - 27— ZH
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Now by (3.8) the images of #,(Z"*2) and m(Y"*') under the map
Z"*? 5 7' - Z"*1 > C must be contained in G, in m;(C). On the other
hand, this composite maps the fiber ¥, , via

Y,,, = (fiber of P, ) — (fiber of W"+2 —> X"+1)
(3.13) = (fiber (Z' X y» 2’} > Z’) = (fiber of Z' — X™)
=Y’ — (fiberof Z"*! - X") - C.

By (3.8) the image of 7,(Y") in m(C) is G,. Hence the image of 7 (Y, ) is

G, because the first map is a nontrivial branched covering and the next three
maps are homeomorphisms. Here we use the geometric fact that any nontrivial
ramified branched covering 4 — B with 4, B connected curves induces an
epimorphism of fundamental groups. Thus the image of the fundamental
groups of both Y,,, and Z"*? equal G,. This proves property B(n + 1) of .
3.7).

To calculate [d"*2, Z"*2] we follow Atiyah’s analysis [1]. Note that the map
(3.12) sends the fibers as indicated in (3.13). Thus if we consider the composite

(314) = Z"2 72 7n, . 5725 XX C o C,

then we may pull back a holomorphic differential w on C to obtain forms
w(n + 2), w(n + 1)on Z"*2 Z"*! respectively. These forms are holomorphic
sections of the duals to the tangent bundle along the fibers of p,.,, p,.:
respectively. Let ¢;( ) denote the first Chern class and (form) denote the
divisor class of zeros of a holomorphic form. We have equalities:

(3.15) —(w(n + 2)) = ¢,(Tangent bundle along the fibersof p,,,) = d,.,
(3.16) —(w(n + 1)) = ¢,(Tangent bundle along the fibers of p,) = d,,.

The relationship between the divisors (w(n + 2)), (w(n + 1)), has been
explicated by Atiyah [1]. Denote by p the map Z"*2 — Z"*! of (3.12). Since
Z"*2 is constructed by taking the double branched covering along the ramifi-
cation divisor #~}(D) in W"*? and the map W"*2 —» Z"*! of (3.12) induces
an isomorphism of fibers (see (3.13)) we obtain the equation:

(3.17) (w(n + 1)) = p*(w(n + 1)) +[(h(D))].

The use of brackets here means that we regard the ramification divisor to be in
Z"*2, Combining (3.15)~(3.17) we have the equality:

(3.18) ' d,e1 = p*(d,) = [(n7}(D))].
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For notational convenience let E, equal (Z’ X y» Z') and F, equal (Z"*!
Xy« Z"*1) in the following calculations.

Using formula (3.18) the following sequence of equalities shows that
[(d,.,)""%, Z"*?] is nonzero, thereby proving property C(n + 1) of (3.7).

(#1) [(d,0)" 277]

=[Z(" 2@y e ) 2

(#2) = }:("”)m ()" 2/2)(-(h(DY))". W]
(#3) - }:N("” #((4)" ) /)Y 5,

(3.19)

)
# =[ZN" ) (@) ) @) Cs2)) B
#35) = [T T2 (@) )1/2)(~(e x e s (27 5, |
=777
I
2

#6) = [T (")) (@) )oY (-5 (2 5|

) = [TM("1 ) e @) 2]

n+

(#8, #9) —16N((1/2) D))" 2] 0.

The equalities in (3.19) are justified as follows:

Equality #1 by (3.18) and the binomial expansion. All the sums in (3.19)
range over indicesi = 1ton + 2.

As for equality #2, note that the divisor [(h~Y(D))]in Z"*? is b*(c,(L)) for
some complex line bundle over W"*? with ¢,(L%) dual to the ramification
divisor A"Y(D) in W"*2, Therefore in rational cohomology we have [(A~}( D))]
= b*(c,(L))! = (1/2)'b*(h~(D))" where on the right A~}(D) is regarded as a
divisor and dually a cohomology class on W"*2, Atiyah gives a thorough
discussion of this poiint in [1]. Since b: Z"*2 - W"*2 is of degree 2, equality
#?2 follows with p’ = C - (pr,) - h and p = p’b.

Next note that h: W"*2 - E, = (Z' X y» Z') is an N-fold unbranched
covering. N is the degree of the finite covering X"*! — Z’ (see (3.11)). Hence,
equality # 3 holds with ¢ = ¢ « (pr,) and p’ = gh.

Recall that the divisor D is S(Z’) + AS(Z’) for disjoint sections X, AS of
pr; (see (3.9)). Thus (D) = (S(Z"))' + (AS(Z")". The automorphism A sends
S(Z’) into A(S(Z")" and in #?3 these classes are evaluated against terms in the
image of g*. Consequently, the term involving AS(Z’)! may be replaced by
one involving S(Z’)’ instead. This shows equality #4.
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Let §: Z"*! > F, = (Z"*! X 4, Z"*') be the section S'(a) = (a, a). Re-
call that the section S: Z’ —» E, = (Z' X 4. Z’) is given by S(z) = (z, z).
There is a commutative diagram:

(¢X¢)

E, M
(3.20) r;) ] l (rr2)
7z’ ¢ Zn+ 1

Recall that (id, 4, B, AB) gives a free (Z/2Z) X (Z/2Z) action on the
space F, - Z"" is the quotient of the free action of (id, 4, B, AB) on Z’. The
quotient map is ¢: Z’ — Z"* Consequently, we may replace (S(Z))’ in #4
by (¢ X ¢)7'S"(Z))! = S(Z") + AS(Z’) + BS(Z') + ABS(Z')" at the cost of
dividing by 4. Equality # 5 follows. Since (¢ X ¢) is an unbranched covering of
degree 16, equality # 6 holds.

The normal bundle of the diagonal embedding of a manifold M in M X M
is canonically identified with the tangent bundle of M. Similarly, the normal
bundle of the section S’(a) = (a, a) in F, is precisely the tangent bundle along
the fibers to Z"*! — X" Let U denote the Thom class of the normal bundle T.
Hence we may replace (-S'(Z"*1)) by (-U)’ in #6. Since

[(er)*((a,)"* ) (-v)", E] = [(pr)*((a,)"")(-1)'(U), E}]
- [(dn)n+1, Zn+1]

equality #7 holds. Here we used the facts that U? = (pr))*(c(T)U, d, =
¢,(T), and U restricted to a fiber of pr, is the generator (since the section S’
intersects each fiber precisely once).

Equality #8 holds by arithmetic while inequality #9 is true by the induc-
tion hypothesis.

This completes the induction step in the proof of Theorem 1.5 assuming
Lemma 3.1.

Proof of Lemma 3.2. We use the notation of Lemma 3.2. Let ¥ — T"*! be
defined by the pullback diagram:

J

v (Z' X3 Z')
(3.21) ] J
Tn+1 Al

By definition T"*! — Z’ is a finite covering arranged so that = (T"*!) acts
trivially on the cohomology H'(Y’; Z) of the fibration ¥ — T"*!, (D) inter-
ests each fiber of (Z’ X 4. Z’) —» Z’ in two points. That is, the restriction of the
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cohomology class (D) to the fiber Y’ is zero. Consequently, j*(D) (mod?2)
in the spectral sequence for ¥V — T"*! lies in the sum of EM =
HYT"*Y; Z/2Z) ® HY(Y'; Z/2Z) and E®? = HYT"*Y; Z/22).

The map X"*!—> T"*! is prearranged to induce the zero map of
H'( ; Z/2Z), the first cohomology with Z/2Z coefficients. Hence the bundie
t: Wn*? > Xx"*1 induced over X"*! will have an associated map h: W"*! —
(Z' X yn Z') such that h*(D) lies in the image of E%* = H*(X"*',Z/27).
Thus, h*(D) = t*(e) for some e in H*(X"*1; Z/22Z).

The section BS induces via pullback a section B’ of #: W"t? - X!
which is disjoint from h*(D) = h*(S(Z") + AS(Z")). Hence, e = (B")*t*(e)
= (B)*(h*(D)) = 0 and so h*(D) = *(e) = 0 in HX(W"*% Z/2Z). This
proves Lemma 3.2.

4. Harer’s results

The mapping class group of a Riemann surface F,, of genus g with r
boundary components is I, , = (A, ,), where A, is the topological group
of orientation preserving dlffeomorphlsms of F, Wthh are the identity on the
boundary of F,,

Let 4: F,, — Fg,+1 (r>1)and B: F,, > F, ., (r > 2) be the inclu-
sions defined by adding a pair of pants (a copy of F,;) sewn along one
boundary component for A4 and two boundary components for B. Also define
C: F,, = F,,y,_, (r > 2) by gluing two boundary components together.

Harer’s theorem is:

Theorem 4.1 (Harer [3]). The associated homomorphisms of mapping class

groups defined by the maps A, B, C induce isomorphisms of integral homology:
Ay H(T,,) = H(A, ,1q)
fork > 1wheng >3k —2,r=1,andfork =1, wheng > 2, r>1,
By: Hk( ) - Hk(Ag+1.r—1)
fork > 1, wheng >3k —1,r>2, andfork =1, wheng >3, r > 2,
Cy: Hk(Ag,r) - Hk(Ag+1.r—2)

when g > 3k, r > 2.

Note that the homomorphisms A ; = A, considered in Theorem 1.2
arise from the mapping 4: F,; — F,, composed with B: F,, = F ;. By
Harer’s result 4.1 the induced mapping H,(A,;) = H;(A,,,;) is an isomor-
phism for k less than (g/3).
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Let D(r): F,, > F,,_, (g = 1) be the inclusion obtained by filling in one
of the boundary disks of F,,. The homomorphism of mapping class groups
A, — A, induced by D(1) is the homomorphism appearing in Theorem 1.2.

In the commutative diagram

A C
Fg—l,2 g—13 Fg,l
(4.1) lH(S) l H(1)
C
Fg—1,2 Fg,O

the inclusion H(3) - 4 induces the identity map on A,_, ,. Thus the induced
homomorphisms on the integral homology of the associated mapping class
groups give a commutative diagram:

A Ce
Hk(Ag—l.Z) - Hk(Ag—l,a) - Hk(Ag,l)
(4.2) (identity) ] J H(1),
Cy
Hk(Ag—l.Z) - Hk(Ag,O)

By Harer’s Theorem 4.1 the maps A,, C, are isomorphisms if & <
((g — 1)/3). Hence, D(1), is an isomorphism in this range also.
This completes the proof of Theorem 1.2.
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